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In terminal airspace, integrating arrivals and departures with shared waypoints provides
the potential of improving operational efficiency by allowing direct routes when possible.
Incorporating stochastic evaluation as a post-analysis process of deterministic optimization
is one way to learn the impact of uncertainty and to avoid unexpected outcomes. This
work presents a way to take uncertainty into consideration during the optimization. The
impact of uncertainty was incorporated into cost evaluations when searching for the optimal
solutions. The controller intervention count was computed using a heuristic model and
served as another cost besides total delay. Costs under uncertainty were evaluated using
Monte Carlo simulations. The Pareto fronts that contain a set of solutions were identified
and the trade-off between delays and controller intervention count was shown. Solutions
that shared similar delays but had different intervention counts were investigated. The
results showed that optimization under uncertainty can identify compromise solutions and
help decision-makers reduce controller intervention while achieving low delays.

I. Introduction

In the National Airspace System (NAS) terminal airspace is often busy and complicated because hundreds
of flights must fly through a limited airspace in a short time period and most flights in terminal areas are
climbing and descending with varied speeds. Situations can become severe when there are several neighboring
busy airports. Bottlenecks can be formed easily and impair the efficiency of air traffic operations. Therefore,
improving the operation efficiency in terminal airspace is critical for building an efficient air traffic system.

In past years, to improve the operational efficiency in terminal airspace, some researchers attempted to
solve arrival scheduling problems.' ¢ Still others”™ addressed airport surface management problems, which
are correlated to the efficiency of terminal airspace operations. When different arrival and/or departure
flows share the same resources such as runways, waypoints and/or route segments, inefficient operations
emerge because of the constraints of shared resources. Such interactions can happen among departures,
arrivals, or between departures and arrivals. Recent studies'®'? showed that optimized integrated arrivals
and/or departures in major airports or metroplex areas have promise for improving operation efficiency.
However, the benefits from optimal schedules calculated under deterministic scenarios are usually sensitive
to flight time uncertainties, which can be caused by many sources, such as inaccurate wind prediction, error
in aircraft dynamics, or human factors. Therefore, the impact of uncertainty must be taken into account
when evaluating a schedule’s benefits. Incorporating stochastic evaluation as a post-analysis process of
deterministic optimization as in previous work!? is one passive way to learn the impact of uncertainty and
to avoid unexpected results. Optimizing integrated arrivals and departures under uncertainty is a proactive
method that directly takes uncertainty into account. A set of compromise solutions can be identified and
offered directly to decision makers to avoid unexpected effects from uncertainty.

This work presents an optimization method of integrating arrivals and departures under uncertainty,
in which the impact of uncertainty was measured directly in the optimization. The optimization is multi-
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objective including total delay and controller intervention count. Both costs were evaluated using Monte-
Carlo simulations. To enable the time-consuming optimization, the number of Monte-Carlo simulations were
decreased. The impact of simplified Monte-Carlo simulation was examined. The Pareto fronts that contain
sets of solutions were presented to show the trade-off between delays and interventions. Solutions with
similar delays but different controller intervention count were investigated further.

In the paper, Section II revisits the problem modelled in previous work. Section II also presents the
multiple objective optimization method that involves Monte Carlo simulations. Section III provides the
results and analysis. Section IV provides conclusions for this work.

II. Background and Problem

The interactions between arrivals and departures in Los Angeles terminal airspace were presented in
previous work!? for studying optimal integrated operations in deterministic circumstances. The uncertainty
analysis of the determinstic solutions has been conducted in other work'? as determined from post-processing.
This work is focused on the same problem of integrating arrivals and departures in Los Angeles.

NAANCH¥g,c.

Figure 1. Interactions between SADDE arrivals and CASTA departures

According to the Standard Terminal Arrival Routes (STARs) and the Standard Instrument Departures
(SIDs) of Los Angeles terminal airspace, the arrivals from the FIM fix would follow procedure SADDE6 (
FIM-SYMON-SADDE-SMO) and the departures to the North need to follow procedure CASTA2 (RWY-
NAANC-GHART-SILEX) (see Fig. 1). The arrivals are requested to maintain their flight altitudes above
12,000 feet at fix GHART and the departures have to keep theirs at or below 9,000 feet at the same fix
to procedurally avoid potential conflicts between arrivals and departures. If there were no interactions,
departures to the north and arrivals from FIM would have flown direct routes. As shown in the Fig. 1, the
direct routes would be RWY-WPT2-WPT1 and FIM-WPT1-SMO for departures and arrivals, respectively,
where WPT1 and WPT2 are made-up fix names for simplicity. Compared to these direct routes, besides
flying non-preferred altitudes, individual arrival and departure flights following current procedures will waste
approximately 60 and 120 seconds, respectively.

Table 1 shows a representative schedule of 14 flights, which covers half an hour traffic in actual operations.
Two flows are included: 6 departures to the North from Runway 24L (RWY) and 8 arrivals from FIM. This
schedule used the traffic between 9:00am and 9:30am (local time) on December 4, 2012 as reference. The
initial times shown in the table are relative times to simulation start time. The “Order” of each flight is
sorted based on intial times.
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Table 1. Scheduled initial times

Order | FIM (sec) | RWY (sec)

1 39 68

2 446 165
3 728 363
4 1106 529
) 1332 1613
6 1475 1830
7 1613 NA
8 1770 NA

III. Method

In this study, the model is constructed similarly to previous works.!? '3 TUnlike pervious work, the

optimization is formulated as a multiple objective optimization. The first objective is to minimize delay
and the second objective is to minimize controller intervention, which is believed to associate with controller
workload increase. Both objectives were evaluated using Monte Carlo simulations.

A. Model

Three separation methods were compared in previous work:'? spatial, temporal, and hybrid. Spatial sep-
aration uses the same strategy as in SIDs and STARs to spatially separate interacting departure and/or
arrival flows. Temporal separation utilizes the direct routes with conflicts resolved merely with temporal
control. Hybrid separation applies both temporal and spatial separations. This work was focused on hybrid
separation.

In the formulation of hybrid separation, four design variables were defined for each FIM arrival i: d1(praz,i
is the delay before or at FIM; r(praz,) is for route option, where 0 denotes the direct route and 1 denotes
indirect route; vy 4 is the aircraft speed between FIM and WPT1 for the direct route or the speed between
FIM and WPT?2 if the indirect route is chosen; d2(pyas; is the delay between WPT1/WPT2 and SUTIE
to ensure separation at SUTIE. For a departure flight j, three decision variables were defined: d(pgpj) is
the delay before departure; rppp, ;) is the route option, where 0 denotes the direct route and 1 denotes the
indirect route. v(ppp ;) is the speed from departure to WPT1.

Separation requirements were applied as hard constraints at fixes that could have potential violations,
such as FIM, RWY, WPT1, WPT2, and SUTIE. Separation requirements were 3 nmi at the RWY and 4
nmi elsewhere. Additionally, an uncertainty buffer § was added in the separation constraints. For example,
Eqns. 1, 2, and 3 show separation constraints for crossing flights between FIM arrivals and departures at
WPTT1, where tpra wpr1,:) is the arrival time of FIM arrivals at fix WPT1 and tpgpwpr1 ;) is the arrival
time of DEP departures at fix WPT1. Eqn. 1 showed that if both arrival flight ¢ and departure flight j took
direct routes the separation must be satisfied. The separation requirement is 4.0 nmi in distance and in time
scale the separation depends on the speeds of both flights.

4.0x3600.0

1
V-sina >0 (1)
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B. Objectives

The optimization in previous work was deterministic with a single objective. The objective was to minimize
the total delay of all departures and arrivals. In this work, the problem is formulated as a multiple objective
optimization, where controller intervention is considered as another objective. The objectives are shown in
Eqn. 4, where N is the controller intervention count.

Ji = Z”k lriMm(suTiE:) T IDEP(WPT1,j) (4)
Je =2k N

Delay cost J; is equivalent to the sum of flight’s exit times. For arrivals and departures, they are the times
when flights reach SUTIE and WPT1, respectively. The difference from previous study'? is that the delay in
this work is evaluated stochastically using Monte Carlo simulations instead of evaluating deterministically.
In Monte Carlo simulations, errors that follow normal distributions are introduced in flights’ entry times.
For a FIM arrival, the perturbation is introduced into the estimated arrival time at FIM. For a westbound
arrival, the error is added to the estimated arrival time at SUTIE. Whereas for a departure, such error is
imposed on the estimated takeoff time from the runway.

As in previous works,'? '3 a heuristic model was built to mimic controller intervention behaviors. When
stochastic errors are added in flights’ entry times, the heuristic model resolves potential conflicts by imposing
extra delays to corresponding aircraft, while keeping the same route options as in the given solution. The
extra delays are then propagated to flights’ next waypoints, and resolutions would happen in chronological
order. Meanwhile, the controller intervention count is accumulated. If there was no perturbation in entry
times like in deterministic cases, no extra delay and controller intervention should be imposed. In each
simulation, the heuristic model is called to check if there is any extra delay and controller intervention. With
Monte Carlo simulations, statistics can be calculated so the objectives are evaluated stochastically.

The optimization is implemented using a Non-dominated Sorting Genetic Algorithm (NSGA),** because
of NSGA’s ability of handling multiple objective optimization. Because the costs are handled independently,
NSGA will lead its search to a Pareto front, where no solution on the front is dominated by another. The
dominance with two objectives is defined as: Assuming the objective is to minimize costs and the constraint
function g has to be nonnegative, solution A is dominated by solution B only if:

J1(A) > J1(B), if ga>0 and gp>0, or, g4 = gB
JQ(A) > JQ(B), if gAZO and gBZO, or, ga = gB (5)
ga < 9B, if ga <0 and gg <0, 0r, gg >0and ga <0

where J; and Jy are the objectives and g is the constraint value. In other words, if all three conditions are
true, solution A cannot be at the Pareto front.

C. Simplified Monte Carlo simulations

Directly incorporating a large scale set of Monte Carlo simulations (like 5,000 simulations) into objective
evaluation would be computationally expensive and make the optimization infeasible. Therefore, the number
of simulations must be decreased. However, the robustness of stochastic cost evaluation might decrease
together with the number of simulations due to the reduced sampling size. For instance, the mean values of
extra delay and controller intervention will fluctuate more in the simplified Monte Carlo than in the full-scale
Monte Carlo. The inconsistent evaluations make the generated costs inaccurate and may result in incorrect
ranking. For instance, solution A is supposed to have a higher rank than solution B because of its low cost,
but the opposite situation happened due to the inconsistent evaluations. The more fluctuated the evaluation
is, the higher likelihood the ranking is incorrect. Therefore, the number of simulations shouldn’t be too low,
otherwise, the NSGA’s searching process will be misled and good solutions can not be achieved.

In this work the number of simulations was reduced to 1,000, which seemed to be a good compromise
between quality and computational time. Figure 2(a) shows the differences in controller intervention between
1,000 and 5,000 simulations during optimization process for around 25,000 solutions. The horizontal axis
is the order of each simulation and the vertical axis denotes the differences measured based on the number
of controller interventions. The average of intervention errors is 0.19 and the standard deviation is 0.065.
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Figure 2. Differences in computing 1,000 simulations vs. 5,000 simulations: (a) Controller intervention count
(b) Delay

The controller intervention counts are averaged at 2.0, therefore, the intervention errors between 1,000 and
5,000 simulations are about 9% in terms of average value. Figure 2(b) shows the differences in extra delays
between 1,000 and 5,000 simulations. The average of errors is about 2.9 seconds and standard deviation is
1.8 seconds. Given the average delay of 542 seconds, the difference is negligible.

IV. Results

This section presents the solutions optimized under uncertainty. The trade-offs between delay reduction
and controller intervention count increase are shown. The solutions that have similar delays and different
intervention counts are compared. Both costs were evaluated stochastically. Monte Carlo simulations were
multi-threaded and the optimization took about 6 hours on a MacOS platform with 2x2.66 GHz 6-Core Intel
Xeon and 8 GB RAM.

A. The Pareto front

Given two objectives of reducing delays and controller intervention counts, NSGA led the search to a Pareto
front, where no solution on the front was dominated by other solutions. Solutions in final generations of the
evolution process were recorded as they were close to the Pareto front. Figure 3 presents these solutions
in final generations ( 1,000+ solutions). Each dot (Jy,J2) corresponds to a solution and its coordinates J;
and Jy are the two costs of the solution. Both costs were evaluated stochastically using simplified Monte
Carlo simulation. The red diamond at coordinates (1227.0, 1.2) sets a reference point for intervention
counts and delay costs under spatial separation for which a low intervention count is expected. The costs
associated with the reference point were generated as averages from full-scale Monte Carlo simulations of
the optimal spatial separation solution, which was produced under deterministic scenarios with delay as the
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single objectives. The horizontal red dotted line marks the red diamond’s intervention cost which serves as
a reference representing low controller intervention. Similarly, the black dotted line at 300 seconds serves as
a reference. These dotted lines and diamond solution were used as references for clarity throughout figures
in this section.

3.5

n
(4]
T

Number of Interventions
N

-
)]
T

|

1 : 1 Il Il ! 1 | !

200 300 400 500 600 700 800 900 1000 1100 1200 1300
Average delay (s)

0.5

Figure 3. Costs of optimized solutions from a single run where costs were evaluated using simplified Monte
Carlo simulations
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Figure 4. Rectified costs in a post-process where costs were evaluated using a full-scale Monte Carlo simulations

The accuracy of the costs of solutions in Fig. 3 needs to be examined because simplified Monte Carlo
simulations were used for evaluation. Therefore, in the post-process, the costs of the same solutions were
re-evaluated using full-scale Monte Carlo simulations. The rectified costs are shown in Fig. 4. Using the
vertical dotted line as a reference, it can be seen that the solutions in Fig. 3 were shifted up and right in Fig. 4
because of the impact of the robustness imposed on delays and controller intervention. But the marginal
difference demonstrated that simplified Monte Carlo simulation works well.

GA-based optimizations are sensitive to initial guesses, which are decided by randomized seeds. Multiple
runs are necessary to increase the chance of getting optimal solutions. In this work, ten runs were performed.
Figure 5 shows the solutions in final generations for each run. It is noted that different initial guesses led
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to different solutions in spite of NSGA’s effort, especially when the average delay is low. Figure 6 presents
the rectified costs using full-scale simulations in a post-process. As expected, most solutions were shifted
up and right. According to the final solutions, it is noted that a clear tradeoff exists between delays and
intervention counts. When delay is reduced the chance of controller intervention increases. Variations of
intervention counts are large for solutions with similar delays, especially when delays are low. A multiple-
objective optimization that incorporates uncertainty can clearly help to find the reduced delay with minimum
intervention. If a decision support tool can be built upon this method, in terms of the solutions that are
close to the Pareto front, decision makers can choose a “compromise” solution according to their preferences.
For instance, if controller intervention is believed to be more important than delay savings, the solutions
that have a delay of about 900 seconds and intervention count similar to the spatial solution (red diamond
solution) should be picked. Or, if two costs are weighted similarly, the compromise solutions around the
middle (e.g. delay around 500) can be chosen because of their large delay savings and tolerable controller
intervention increase.
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Figure 5. Costs of optimized solutions from ten runs where costs were evaluated using simplified Monte Carlo
simulations
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Figure 6. Rectified costs in a post-process where both costs were evaluated using a full-scale Monte Carlo
simulation
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B. Effect of controller intervention

According to Fig. 6, solutions that shared similar delays may cause quiet different controller intervention
counts. For instance, at delays around 430 seconds, the average intervention can vary from 2.4 to 3.5.
Figures 7 and 8 are the time lines for solutions at either end of this intervention count range. The small
gray boxes are the minimum separation requirements associated with flights. As mentioned previously, the
separation requirement is a function of aircraft speed and the type of potential conflicts (crossing or in-trail).
Therefore, the gray boxes have different lengths. As defined, the boxes are separated by an extra 30 second
buffer. Any departure following the direct route should go through WPT2, whereas any arrival from the
FIM fix flying the direct route would pass WPT1.
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Figure 7. Time line for the solution with high controller intervention count
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Figure 8. Time line for the solution with low controller intervention count

In terms of costs, these two solutions shared similar delays at around 423 seconds but resulted in different
controller intervention efforts. The solution associated with Fig. 8 has an average intervention count of 2.45,
whereas the Fig. 7 solution corresponds an average intervention count of 3.56 — a 45 % increase. Based on the
comparison, the major differences between them are that: The high-controller-intervention solution allowed
FIMO003 and FIMOO8 to fly direct routes whereas the low-controller-intervention solution chose FIM007 and
DEPO006 to fly direct routes (See the flights pointed by arrows in the figures). Those differences in route
options would not affect the delay reduction but would lead to different controller intervention. Apparently,
this subtle difference could not be easily predicted without the optimization under uncertainty.
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C. Discussion

The proposed method presents a set of Pareto solutions to decision makers/air traffic controllers and can
help them quickly identify potential benefits and trade-offs for integrated arrival and departure operations.
Although this work is focused on LAX, the methodology should be easily applied to different major airports
where similar inefficiency exists.

In this work, it took about 6 hours to finish the optimization process, which seemed to be a problem for
real-time application. But because both Monte Carlo simulations and the NSGA algorithm are well-suited
for parallelization due to their independent calculations and memories, the optimization method proposed in
this paper has the potential to be sped up by hundreds of times using GPU implementation'® and thus may
be a candidate for a real-time/fast-time tool. In addition, the searching ranges of decision variables may be
smaller in actual operations. For example, the ranges of delays for arrivals are connected to certain traffic
control actions like vectoring, holding, and slowing down. Instead of continuous decision variables as in this
work, discrete variables that are associated with smaller searching spaces may be used in actual operations.
This will help speed up the optimization process as well.

V. Conclusions

In order to directly take the impact of uncertainty into account, an optimization method of integrated
arrivals and departures under uncertainty was developed in this study. The impact to controller intervention
was included in the optimization. The problem was formulated as a multiple objective optimization with
delays and intervention count as the costs. Monte Carlo simulations were utilized to stochastically evalu-
ate both costs. To enable the time-consuming optimization, the number of Monte Carlo simulations were
reduced. The Pareto fronts that contain sets of solutions were identified. The trade-off between delays and
controller intervention counts was shown and solutions with similar delays but different intervention effort
were investigated.

Through this study, the optimization under uncertainty for integrated arrivals and departures were found
to be feasible with simplified Monte Carlo simulations. Decreasing the number of simulations from 5,000 to
1,000 affected the controller intervention evaluation 9% but reduced the computational times to a reasonable
level. Using this formulation, the method can provide a sweep of solutions that are close to the Pareto
front so the decision makers can choose in terms of their preferences. Solutions may have similar delays
but cause quite different controller intervention efforts. The subtle difference in solutions/delays can result
in a significant difference in intervention counts (e.g. 45%), which would not be easily foreseen without
the optimization under uncertainty. As the Monte Carlo simulations and the NSGA algorithm are all well-
suited for parallelization because of their independent calculations and memories, the proposed optimization
algorithm is expected to be sped up by hundreds of times using GPU implementation and becomes a real-
time/fast-time application.
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